
Artist's impression of the active galactic nucleus shows the supermassive black hole at the center of the accretion disk sending a narrow high-energy jet of matter into space, perpendicular to the disc in this image by Science Communication Lab in Kiel Germany, released on July 12, 2018. In a study published in the journal Science, researchers have determined that a supermassive black hole like this one is the source of high-energy neutrinos detected on Earth. Courtesy DESY, Science Communication Lab/Handout via REUTERS
Scientists have captured a ghost-like subatomic particle on Earth, helping to solve a mystery baffling scientists for 100 years.
The so-called "ghost particle" was trapped by researchers in a giant ice cube at the South Pole.
It's actually a high-energy neutrino, and is the first of its type ever detected by scientists.
Importantly, researchers believe they've tracked its likely source: a supermassive black hole that emits light and cosmic rays.